DOI: 10.24411/2309-348X-2019-11084

УДК 633.31/37

АЗОТФИКСАЦИЯ ГОРОХА СОРТОВ НЕМЧИНОВСКОЙ СЕЛЕКЦИИ В ЗАВИСИМОСТИ ОТ УДОБРЕНИЙ НА ДЕРНОВО-ПОДЗОЛИСТОЙ ПОЧВЕ ЦЕНТРАЛЬНОГО НЕЧЕРНОЗЕМЬЯ И ВКЛАД ФИКСИРОВАННОГО АЗОТА В МАЛЫЙ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ

В.В. КОНОНЧУК, доктор сельскохозяйственных наук В.Д. ШТЫРХУНОВ, кандидат сельскохозяйственных наук, Г.В. БЛАГОВЕЩЕНСКИЙ, доктор сельскохозяйственных наук, С.М. ТИМОШЕНКО, С.В. СОБОЛЕВ, Т.О. НАЗАРОВА, кандидаты сельскохозяйственных наук

ФГБНУ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «НЕМЧИНОВКА»

На среднеокультуренной дерново-подзолистой почве Центра Нечерноземной зоны $P\Phi$ урожайность сенажной массы и зерна горохо-пшеничных смесей 4,6-8,4 т/га и 2,4-3,4 т/га (89-100% от достигнутого максимума) создавалась внесением $P_{80}K_{110}$ и $N_{30}P_{80}K_{110}$ в зависимости от состава, а урожайность зерна в чистых посевах гороха и пелюшки при этом достигала 3,2-4,2 т/га (86-100%). На этих вариантах с растительными остатками в пахотный слой дополнительно поступало 60-130 кг/га симбиотически связанного азота ($K\Phi$ 0,39-0,74) при обогащении им почвы 12-73 кг/га. Расчетная прибавка возможной урожайности зерна последующей озимой пшеницы от $N_{\delta uor}$ может достигать 6-10 ц/га.

Ключевые слова: Нечерноземье, горох, сорт, удобрение, урожайность, азотфиксация.

Зернобобовые культуры в одновидовых и смешанных посевах наряду с многолетними травами составляют основу отечественного кормопроизводства. В последние годы их роль в обеспечении крупного рогатого скота высококачественными объемистыми и концентрированными кормами постоянно возрастает вследствие отсутствия перспектив расширения площадей посева бобовых и бобовозлаковых многолетних трав в связи с недостаточным количеством семян высоких посевных кондиций.

Современные сорта зернобобовых культур благодаря целенаправленной селекции характеризуются высокой азотфиксирующей способностью. При формировании урожайности они используют труднорастворимые почвенные фосфаты и калий. В результате этого часть накопленных в биомассе элементов питания попадает в почву с растительными остатками и участвует в питании последующих зерновых культур, что ставит зернобобовые в ряд их лучших предшественников.

Поэтому исследования по установлению оптимальных условий для азотфиксации, роста и развития растений зернобобовых культур, формирования высокой урожайности надземной массы и зерна, повышения их вклада в плодородие почвы путем регулирования элементов технологий их возделывания, в частности — применения удобрений, для Нечерноземья являются приоритетными и актуальными.

Применительно к почвенным условиям Центрального Нечерноземья и современным сортам зернобобовых культур, в том числе посевного и полевого гороха исследований подобного рода явно недостаточно. В большей степени это относится к обоснованию и разработке системы применения азотных удобрений. В научном сообществе существуют различные мнения о необходимости использования промышленного азота при их возделывании. Тем не менее, в большинстве публикаций обосновывается необходимость внесения небольших (N_{30-60}) доз азотных удобрений для создания благоприятных условий формирования бобово-ризобиального симбиоза и его последующего функционирования [1-7].

Материалы и методика исследований

Исследования проводили в 2016-2018 годах в серии краткосрочных полевых опытов в паровом звене полевого севооборота. В качестве парозанимающих культур использовали одновидовые посевы посевного и полевого гороха сортов Немчиновский 100, Немчиновский 50, Флора 2 и яровой пшеницы Лиза, а также смеси гороха и пелюшки с яровой пшеницей. Варианты одновидовых посевов и смесей накладывали на три фона удобрений: $P_{80}K_{110}$, $N_{30}P_{80}K_{110}$, $N_{45}P_{80}K_{110}$. Повторность чистых и смешанных посевов четырехкратная. Площадь делянки 80 m^2 , учетная 27 m^2 . Нормы высева пшеницы и гороха в одновидовых посевах 6,0 млн./га и 1,4 млн./га соответственно. Соотношение семян компонентов в смесях при посеве (%) 50:50 от полной нормы высева. Предшественник – ячмень на зерно. Почва – дерновоподзолистая среднесуглинистая на моренном суглинке. Пахотный слой ее весной в фазе 4-6 настоящих листьев гороха характеризовался следующими агрохимическими показателями: гумус (по Тюрину в модификации ЦИНАО, ГОСТ 26213-91) 1,5-1,8%, $pH_{\kappa cl}$ (ГОСТ 26483-850 5,4-6,0, P_2O_5 и K_2O в одной вытяжке по Кирсанову (ГОСТ 26207-91) 200-260 мг/кг и 180-200 мг/кг соответственно, Нг (по Каппену, ГОСТ 26212-84) 1,9-2,9 мг-экв/100 г.

Посев проводили в лучшие агротехнические сроки с 25 апреля по 9 мая на глубину 5-7 см сеялкой Amazone D9. Фосфорные и калийные удобрения (аммофос 8:52 и хлористый калий) вносили с осени под зябь, азотные (аммиачная селитра) — под предпосевную культивацию (PBK -3,6) — весной.

За две недели до посева семена бобовых протравливали Фундазолом (2 кг/т) и обрабатывали раствором молибдата аммония, семена злаковых — Винцитом форте (1,2 л/т). За сутки до посева на семена гороха и пелюшки наносили активные штаммы азотфиксирующих микроорганизмов производства ВНИИСХМ (г. Пушкин, Ленинградская обл.). Защиту растений от сорняков применяли только в одновидовых посевах. Для этого на 2-3 день после посева на делянки с горохом и пелюшкой вносили почвенный гербицид Гезагард (2,5 л/га). Яровую пшеницу по всходам опрыскивали баковой смесью из Линтура ВДГ (0,18 кг/га) и инсектицида БИ-58 (0,8 л/га) против листогрызущих насекомых, а в начале трубкования — фунгицидом Колосаль Про (0,3 л/га) против мучнистой росы и листостебельных пятнистостей. В фазе бутонизации — начале цветения гороха применяли инсектицид Эфория (0,3 л/га) для борьбы с гороховой зерновкой. При этом использовали штанговый опрыскиватель Атагопе, агрегатируемый с трактором МТЗ – 82.

В течение вегетации одновидовых и смешанных посевов проводили следующие учеты и наблюдения: при появлении единичных цветков гороха и пелюшки на всех вариантах одновидовых посевов и смесей изучали азотфиксирующую способность сортов посевного и полевого гороха методом сравнения с не бобовой культурой (яровая пшеница) [8], в фазе «зеленого боба» на вариантах смешанных посевов учитывали урожайность надземной массы с использованием мини косилки роторного типа, а в полную спелость зерна на всех вариантах – его урожайность прямым комбайнированием селекционным комбайном Wintersteiger. Перед учетами с трех площадок на делянке отбирали растительные образцы для изучения ботанического состава, структуры урожая весовым методом и содержания элементов питания, в надземной массе, зерне и соломе. Результаты учетов после приведения к стандартной влажности и 100% чистоте подвергали дисперсионному анализу по методике Б.А. Доспехова (1985) [9] с использованием компьютерной программы Statgraf (ВИУА, 1990) [10]. Учеты пожнивных остатков и корней в слое почвы 0-20 см после уборки на сенаж и зерно проводили по методике Н.З. Станкова [11]. В образцах растений, зерна, соломы пожнивных остатков и корней по видам и сортам изучаемых культур определяли содержание общего азота по ГОСТ 13496.4-93. Влажность растительного материала и зерна определяли методом весового термостатирования (ГОСТ 13496.3-90).

По данным АМС «Немчиновка» вегетационные периоды (май-август) в годы проведения исследований по погодным условиям существенно различались. Если в 2016 и 2017 годах гидротермический коэффициент (ГТК) по Селянинову за указанный период составлял 2,1 и 2,2, то в 2018 году — только 1,2, что предопределило различия по

урожайности. Если урожайность зерна одновидовых посевов гороха во влажные годы в среднем по вариантам удобрений изменялась в пределах 3,4-3,7 т/га, то в засушливом 2018 году 2,6-3,4 т/га, в смесях – от 2,6 т/га до 4,6 т/га и от 2,1 т/га до 2,6 т/га соответственно.

Результаты и обсуждение

Накопление общего азота в надземной массе посевного гороха Немчиновский 100 в начале цветения в зависимости от вариантов удобрений в среднем за 2016-2018 годы составило 122-154 кг/га. Близкими величинами 138-154 кг/га характеризовался сорт полевого гороха Флора 2. Несколько более высоким накоплением выделялся сорт посевного гороха Немчиновский 50 – от 135 кг/га до 167 кг/га азота. По размерам накопления симбиотически связанного азота (разность между накоплением общего азота в биомассе бобовой культуры и яровой пшеницы) изучаемые виды и сорта гороха в одновидовом посеве различались слабо: Немчиновский 100 - 61-104 мг/кг, Немчиновский 50 - 66-123 кг/га, Флора 2 - 76-96 кг/га или в среднем по вариантам удобрений 81, 91 и 87 кг/га соответственно (табл. 1). Коэффициенты азотфиксации (Кф), представляющие собой отношение количества фиксированного азота к величине накопления общего азота, в зависимости от доз и сочетания удобрений изменялись в диапазоне 0,43-0,68, 0,46-0,74 и 0,49-0,69 соответственно по указанным сортам, что свидетельствует о достаточно высокой способности к усвоению атмосферного азота. При этом проявлялась различная реакция видов и сортов на внесение азотного удобрения. У сорта посевного гороха Немчиновский 50 и у полевого гороха Флора 2 способность к азотфиксации с ростом доз азота в диапазоне от 0 до 30-45 кг/га уменьшалась от 0,74-0,69 до 0,46-0,49, а у посевного гороха Немчиновский 100 максимум азотфиксации (Кф 0,68) наблюдался в варианте $N_{30}P_{80}K_{110}$ и уменьшался до 0,43 с ростом дозы азота до 45 кг/га (табл. 1).

Следовательно, при высокой обеспеченности почвы подвижным фосфором и калием в течение первой половины вегетации посевного и полевого гороха сортам Немчиновский 50 и Флора 2 для проявления высокой азотфиксирующей способности не требовалось дополнительного внесения азотного удобрения. Свою потребность в азотном питании они на 69-74% удовлетворяли за счет азота воздуха. В отличие от них сорту Немчиновский 100 для проявления максимальной способности к усвоению атмосферного азота требовалось предпосевное внесение небольшой дозы 30 кг/га азота, которая способствовала росту накопления биологического азота в биомассе с 78 кг/га до 104 кг/га, коэффициента азотфиксации – с 0,64 до 0,68. Увеличение дозы азота на фоне РК до 45 кг/га приводило к существенному снижению накопления биологического азота и Кф (табл. 1).

Азотфиксация бобовым компонентом в рассматриваемых бобово злаковых смесях в целом характеризовалась меньшими величинами в сравнении с одновидовыми посевами, что обусловлено усилением межвидовой быть конкуренции жизнеобеспеченности. Величины Кф при этом в зависимости от видо-сортового состава и удобрений варьировали в пределах 0,62-0,39. У смесей посевного гороха Немчиновский 100 и Немчиновский 50 с яровой пшеницей наиболее высокие величины Кф 0,59 и 0,62 получены на фосфорно-калийном фоне без внесения азотного удобрения, возрастающие дозы которого уменьшали их величины до 0,39-0,46 и до 0,48-0,31 соответственно. У бобово злаковой смеси с участием полевого гороха Флора 2 максимум азотфиксации (Кф=0,66) наблюдался в варианте $N_{30}P_{80}K_{110}$. Увеличение дозы азота до 45 кг/га приводило к уменьшению величины рассматриваемого показателя до 0,48 или на 27%. Следует отметить, что при достигнутом уровне урожайности сухой надземной массы на лучших по азотфиксирующей способности вариантах в ней накапливалось от 43 кг/га до 59 кг/га симбиотически связанного азота, в том числе 57-59 кг/га у смесей с участием посевного гороха Немчиновский 50 и полевого гороха Флора 2 (табл. 1).

Таким образом, как и в чистых посевах гороха и пелюшки, в смесях с их участием лучшие условия для азотфиксации складывались при высокой обеспеченности почвы фосфором и калием как правило без внесения азотного удобрения или с применением N_{30} на фоне PK.

Таблица 1 Азотфиксирующая способность одновидовых и смешанных посевов гороха сортов Немчиновской селекции в зависимости от удобрений. Бутонизация-начало цветения бобового компонента. 2016-2018 гг. *)

	Дозы и сочетание удобрений, кг/га											
Культура, смеси	$P_{80}K_{110}$					$N_{30}P_{80}$	K ₁₁₀		$N_{45}P_{80}K_{110}$			
	урожайн	N в урожае, кг/га		Кф	урожайно	N в урожае, кг/га		Кф	урожайн	N в урожае, кг/га		Кф
	ость, ц/га	общи й	фиксиро ванный	**)	сть, ц/га	общи й	фиксир ованны й	**)	ость, ц/га	общи й	фиксиро ванный	**)
Пшеница яровая Лиза	30,8	44	-	-	37,0	50	-	_	52,1	79	-	-
Горох посевной Немчиновский 100	32,8	122	78	0,64	42,5	154	104	0,68	40,2	141	61	0,43
Горох посевной Немчиновский 50	48,4	167	123	0,74	38,4	135	85	0,63	40,2	145	66	0,46
Горох полевой Флора2	41,4	140	96	0,69	42,3	138	88	0,64	51,2	155	76	0,49
Горох посевной Немчиновский 100+пшеница яровая Лиза	57,2	73	43	0,59	66,8	56	22	0,39	79,3	80	37	0,46
Горох посевной Немчиновский 50+пшеница яровая Лиза	64,6	92	57	0,62	83,8	66	32	0,48	74,4	70	22	0,31
Горох полевой Флора 2 + пшеница яровая Лиза	42,7	84	52	0,62	46,5	89	59	0,66	63,1	84	40	0,48

^{*)} у смесей в среднем за 2017-2018 г.г. **) с учетом $N_{\text{биол.}}$ в злаковом компоненте смесей [8]

Таблица 2 Накопление общего и биологического азота в товарной и нетоварной части урожая горохо-пшеничных смесей на сенаж в зависимости от состава и удобрений. В среднем за 2017-2018 гг.

Показатели		Горох посевной Немчиновский			Горох посевной Немчиновский			Горох полевой Флора				
		100 + 1	пшеница ярс	вая Лиза	50+пшеница яровая Лиза			2+пшеница яровая Лиза				
		I	$HCP_{05} = 0.84$	г/га	$HCP_{05} = 1,48 \text{ T/ra}$			HCP ₀₅ =0,88 т/га				
			Дозы и сочетания удобрений, кг/га									
		P ₈₀ K ₁₁₀	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$	P ₈₀ K ₁₁₀	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$	P ₈₀ K ₁₁₀	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$		
Сбор сухой надземной массы, т/га		5,72	6,68	7,93	6,46	8,38	7,44	4,27	4,65	6,31		
Азот в урожае,	общий	115	160	191	167	250	216	106	116	154		
кг/га	фиксированный	62	90	62	128	199	129	66	60	64		
Растительные ос	Растительные остатки, т/га *)		7,98	9,00	9,94	9,24	9,24	9,24	9,38	9,80		
Азот в	общий	96	104	105	136	123	123	125	132	133		
растительных остатках, кг/га	фиксированный	52	58	35	105	98	74	78	70	54		
Вовлечение азота в	общий	211	264	296	303	373	339	231	248	287		
круговорот, кг/га	фиксированный	114	148	97	233	297	203	144	130	118		

^{*)} с поправкой на полноту учета 1,3 [13]

Таблица 3 Накопление общего и фиксированного азота в товарной и нетоварной частях урожая посевного и полевого гороха на зерно в зависимости от удобрений. Одновидовой посев. В среднем за 2016-2018г.г.

Показатели		Γ орох посевной Немчиновский 100 $HCP_{05} = 0.35 \text{ т/га}$			Горох посевной Немчиновский 50 $HCP_{05} = 0.26 \text{ т/га}$			Горох полевой Флора 2 $HCP_{05} = 0,27 \text{ т/га}$				
			Дозы и сочетания удобрений, кг/га									
		$P_{80}K_{110}$	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$	$P_{80}K_{110}$	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$	$P_{80}K_{110}$	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$		
Урожайность зерна, т/га		3,44	3,39	2,95	4,19	3,45	3,17	3,10	3,25	3,77		
Азот в урожае,	общий	123	121	104	154	123	114	112	119	129		
кг/га	фиксированный	84	77	46	114	78	52	77	76	63		
Растительные остатки, ц/га *)		9,22	9,12	8,23	10,72	9,23	8,68	8,54	8,84	9,87		
Азот в растительных	общий	129	125	112	140	116	112	124	124	136		
остатках, кг/га	фиксированный	88	80	49	104	73	52	86	79	67		
Вовлечение азота в	общий	252	246	216	294	239	226	236	243	265		
круговорот, кг/га	фиксированный	172	157	95	218	151	104	163	155	130		

^{*)} с учетом поправки на полноту учета 1,4 [13], то же и в табл. 4

Таблица 4 Накопление общего и фиксированного азота в товарной и нетоварной части урожая горохо-пшеничных смесей на зерно в зависимости от состава и удобрений. В среднем за 2017-2018 г.г.

= 011=1101=100 = 01 000 = 11 = 0 = 0 = 0												
Показатели		Горох посевной Немчиновский			Горох посевной Немчиновский			Горох полевой Флора 2+пшеница				
		100 + пшеница яровая Лиза			50+пшеница яровая Лиза			яровая Лиза				
		$HCP_{05} = 0,20 \text{ т/га}$			$HCP_{05} = 0.26 \text{ T/ra}$			HCP ₀₅ =0,24 т/га				
			Дозы и сочетания удобрений, кг/га									
	$P_{80}K_{110}$	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$	$P_{80}K_{110}$	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$	$P_{80}K_{110}$	$N_{30}P_{80}K_{110}$	$N_{45}P_{80}K_{110}$			
Урожайность зерна, ц/га		2,74	3,24	3,45	2,79	3,41	3,09	2,45	2,47	2,76		
A	общий	79	101	102	88	115	101	73	74	90		
Азот в урожае, кг/га	фиксированный	43	57	33	68	92	61	48	39	38		
Растительные остатки, ц/га *)		10,23	11,58	12,15	10,36	12,07	12,16	9,48	9,50	10,28		
Азот в растительных	общий	101	122	120	108	124	131	107	104	119		
остатках, кг/га	фиксированный	55	69	39	84	99	79	70	55	50		
Вовлечение азота в	общий	180	223	222	196	239	232	180	178	209		
круговорот, кг/га	фиксированный	98	126	72	152	191	140	118	94	88		

Удобрительная ценность зернобобовых культур находится в соответствии с массой и качеством растительных остатков, поступающих в почву после уборки урожая, а точнее — от количества накопленного в ней биологического азота и от того, происходит ли при этом обогащение им почвы. Размеры обогащения определяются по разности между величинами накопления в растительных остатках биологического азота и азота почвы [12]. Если разница в пользу азота биологического, то искомое обогащение имеет место, если в пользу почвенного азота — то последнего не происходит.

Нами установлено, что при выращивании изучаемых бобово злаковых смесей на сенаж урожайность сухой надземной массы в фазе «зеленого боба» в зависимости от состава и удобрений изменялась от 4,27 т/га до 8,38 т/га. В среднем за 2017-2018 годы отмечалось хорошо выраженное влияние азота удобрений на размеры сбора сухой массы и на накопление в ней общего азота, величины которого варьировали в диапазоне изучаемых доз N от 106 до 250 кг/га. Максимум накопления общего азота в урожае горохо-пшеничных смесей с участием посевного гороха Немчиновский 100 и пелюшки Флора 2 наблюдался в варианте $N_{45}P_{80}K_{110}$, а у смеси Немчиновский 50 + яровая пшеница — при внесении $N_{30}P_{80}K_{110}$ и составлял соответственно 191, 154 и 250 кг/га. С учетом Кф на этих вариантах в отчуждаемой с поля биомассе накапливалось соответственно 62, 199 и 64 кг/га симбиотического азота (табл. 2).

При поступлении в почву сухой массы растительных остатков, включающих поукосный опад, стерню и корни в слое 0-20 см с поправкой на полноту учета 1,3 [13], в зависимости от состава смесей, доз и сочетания удобрений, равной 7,98-9,80 т/га, в ней накапливалось от 104 до 136 кг/га общего и от 35 до 105 кг/га биологического азота, а на вариантах максимального накопления ПКО, равного 9,0-9,8 т/га – от 105 до 133 кг/га и от 35 до 74 кг/га соответственно. При этом в малый биологический круговорот вовлекалось 287-373 кг/га общего и 97-297 кг/га симбиотически связанного азота (табл. 2). Если считать, что в год запашки пожнивно-корневых остатков последующей культурой используется 25% аккумулированного в них азота (как и из навоза) или 24-74 кг/га, то его может быть достаточно для дополнительного производства от 6 до 10 ц/га зерна современных сортов озимой пшеницы. При этом величины обогащения почвы биологическим азотом в зависимости от вариантов смесей и удобрений составляли от 8-12 кг/га до 25-31 кг/га и до 73-74 кг/га. Однако из вариантов, обеспечивших формирование максимального сбора сухой надземной массы 6,3-8,4 т/га, значимое обогащение почвы $N_{\text{биол}}$, равное 73 кг/га отмечалось только в посевах смеси посевного гороха Немчиновский 50 с яровой пшеницей ($P_{80}K_{110}$). По остальным изучаемым смесям размеры накопления почвенного азота в ПКО превышали таковые по $N_{\text{биол.}}$, что свидетельствовало об отсутствии обогащения. В связи с этим при выращивании однолетних бобовозлаковых смесей на сенаж с участием гороха Немчиновского 100 и пелюшки Флора 2 для получения экономически значимого урожая с одновременным обогащением почвы N_{6000} , следует обратить внимание на вариант $N_{30}P_{80}K_{110}$, обеспечивший получение 6,7 и 4,6 т/га сухой надземной массы (74-80% от максимума) и обогащение почвы азотом биологического происхождения в пределах 12 кг/га (табл. 2).

Урожайность зерна в одновидовых посевах гороха и пелюшки в зависимости от вариантов удобрений и сортов варьировала в среднем от 2,95 т/га до 4,19 т/га, в смесях — от 2,45 до 3,41 т/га с накоплением в ней 104-154 кг/га и 73-115 кг/га общего, 46-114 кг/га и 33-92 кг/га фиксированного азота (табл. 3-4).

В этих посевах существенно (до 8,2-9,9 т/га в чистых и до 9,5-12,2 т/га в смешанных) возрастала масса органического вещества растительных остатков за счет добавления соломы, доля которой в общем накоплении варьировала в пределах 80-83%. В массе ПКО было сосредоточено соответственно 104-154 кг/га и 101-134 кг/га общего, 46-114 кг/га и 39-99 кг/га фиксированного азота. Минерализация последнего способна обеспечить получение от 0,4-0,5 т/га до 1,0 т/га зерна озимой пшеницы.

При достигнутой урожайности зерна в чистых посевах гороха и пелюшки в малый биологический круговорот в целом вовлекалось 216-294 кг/га общего азота и 95-218 кг/га

связанного, а обогащение почвы $N_{\text{биол}}$. составляло по указанным видам 30-68 кг/га и 9-74 кг/га.

В чистых посевах на зерно весьма значимые величины обогащения почвы биологическим азотом на вариантах удобрений, обеспечивших получение урожайности зерна максимального уровня, наблюдались при выращивании сортов посевного гороха ($P_{80}K_{110}$) и составляли 47-68 т/га. У пелюшки (вариант $N_{45}P_{80}K_{110}$) отмечалось равновесие между накоплением в пожнивно-корневых остатках и соломе почвенного и биологического азота. Поэтому оптимальным вариантом здесь следует считать $N_{30}P_{80}K_{110}$, где урожайность составила 3,25 т/га (86 % от максимума), а обогащение почвы $N_{\text{биол}}$. — 34 кг/га (табл. 3).

В смешанных посевах на зерно только вариант $N_{30}P_{80}K_{110}$ (Немчиновский 100 + яровая пшеница) обеспечил получение урожайности зерна максимального уровня 3,41 т/га и обогащение почвы $N_{6иол}$. в 74 кг/га. По остальным смесям при формировании урожайности максимального уровня обогащения почвы биологическим азотом не отмечалось. Тем не менее, у смеси Немчиновский 100 + яровая пшеница при внесении $N_{30}P_{80}K_{110}$ урожайность хотя и была ниже максимума на 6% и составила 3,25 т/га, но обогащение почвы $N_{6иол}$ достигало 16 кг/га. У смеси пелюшки с яровой пшеницей в варианте $P_{80}K_{110}$ при урожайности зерна 2,45 т/га или 89% от максимума обогащение почвы азотом биологического происхождения достигало 33 кг/га. В сложившихся условиях возделывания эти варианты систем удобрения и следует считать оптимальными (табл. 4).

Таким образом, на среднеокультуренной дерново-подзолистой почве Центрального Нечерноземья с высокой обеспеченностью пахотного слоя подвижным фосфором и калием при выращивании одновидовых посевов гороха и пелюшки на зерно урожайность, близкая к достигнутым максимальным значениям 3,25-4,19 т/га и обогащение пахотного слоя биологическим азотом в пределах 34-68 кг/га отмечалось на вариантах фосфорно-калийного фона и внесения N_{30} PK. Эти же варианты следует признать оптимальными и при выращивании на зерно однолетних бобово-злаковых смесей с их участием, где при урожайности 2,45-3,41 т/га обогащение почвы $N_{\text{биол}}$. варьировало в зависимости от состава в пределах 16-74 кг/га.

Выводы

- 1. Азотфиксирующая способность сортов гороха и пелюшки Немчиновской селекции в чистых и смешанных посевах максимальных размеров (Кф 0,59-0,74) достигала при высокой обеспеченности пахотного слоя среднесуглинистой дерново-подзолистой почвы подвижным фосфором и калием на вариантах $P_{80}K_{110}$ и $N_{30}P_{80}K_{110}$. Наибольшая из изучаемых доза азота 45 кг/га на фоне РК снижала величины Кф на 27-50% от максимума.
- 2. Внесение $P_{80}K_{110}$ и $N_{30}P_{80}K_{110}$ обеспечивало получение 4,6-8,4 т/га сухой надземной массы и поступление в почву 7,98-9,38 т/га растительных остатков, в которых накапливалось 58-98 кг/га симбиотически связанного азота. В малый биологический круговорот при этом вовлекалось 130-297 кг/га азота биологического происхождения, а обогащение им почвы составляло 12-73 кг/га в зависимости от состава травосмесей.
- 3. Урожайность зерна гороха и пелюшки в одновидовых посевах при внесении $P_{80}K_{110}$ и $N_{30}P_{80}K_{110}$ составляла 3,25-4,19 т/га или 86-100% от достигнутого максимума, в смесях 2,45-3,41 т/га (89-100%) в зависимости от состава, а накопление сухой массы растительных остатков достигало соответственно 8,84-10,72 и 9,48-12,07 т/га в том числе соломы 80-83%. В них накапливалось79-104 кг/га и 69-99 кг/га $N_{\text{биол}}$, а суммарное вовлечение его в круговорот находилось в пределах 155-218 кг/га в чистых и 118-191 кг/га в смешанных посевах. Обогащение почвы симбиотически связанным азотом на этих вариантах составляло соответственно 34-68 кг/га и 16-24 кг/га.
- 4. За счет дополнительного поступления в почву $N_{\text{биол}}$. растительных остатков гороха и пелюшки в одновидовых и смешанных с яровой пшеницей посевах на оптимальных по урожайности и обогащению почвы азотом вариантах возможная прибавка урожайности зерна последующей озимой пшеницы может достигать 6-10 ц/га.

Литература

- 1. Колобов А.В. Сравнительная оценка продуктивности различных видов однолетних культур // Научное обеспечение аграрного производства в современных условиях / Сборник материалов международной науч.-практ. конф., посвященной 35-летию ФГОУ «Смоленская ГСХА», ч.1. Смоленск, 2010. С. 154-156.
- 2. Шамаев В.А. Влияние минеральных удобрений на продуктивность викоовсяной смеси и ее компонентов // Научное обеспечение аграрного производства в современных условиях / Сборник материалов международной науч.-практ. конф., посвященной 35-летию ФГОУ «Смоленская ГСХА», ч.1. Смоленск, 2010. С. 296-298.
- 3. Новиков В.М. Продуктивность гороха и сои в зависимости от основной обработки почвы и минеральных удобрений // Зернобобовые и крупяные культуры. 2013. № 2 (6). С. 106-112.
- 4. Котлярова О.Г., Чернявский К.Н. Азотфиксация гороха в зависимости от обработки почвы и удобрений // Плодородие. -2007. -№ 2 (35), C. 46-47.
- 5. Хакимов Р.А., Глотова В.А. Эффективность предпосевной обработки семян гороха ризоторфином и микроэлементами на разных уровнях минерального питания // Научное обеспечение сельскохозяйственной отрасли в современных условиях // Материалы Всеросс. науч.-практ. конф., посвященной 75-летию со дня рождения доктора с.-х. наук, профессора, заслуженного агронома РФ К.И. Карповича. Ульяновск, УлГАЦ. 2016. С. 426-432.
- 6. Шкотова Е.Н. Влияние микробно-растительных сообществ и минерального азота на урожайность смешанных посевов в условиях серых лесных почв // Зерновое хозяйство России, 2016, №3 (45). С. 64-66.
- 7. Прядильщикова Е.Н., Безгорова И.Л., Коновалова Ю.Н. Урожайность гороха полевого усатого морфотипа в зависимости от уровня минерального питания // Перспективы применения средств химизации в ресурсосберегающих агротехнологиях / Материалы 47-й Международной науч. конф. молодых ученых, специалистов, агрохимиков и агроэкологов. М., ВНИИА. 2013. С. 156-159.
- 8. Трепачев Е.П. Метод сравнения с небобовыми растениями / Агрохимические аспекты биологического азота в современном земледелии. М., 1999. Раздел 2.6. С. 107-115.
- 9. Доспехов Б.А. Планирование полевого опыта и статистическая обработка данных. М. 1985. 351с.
- 10. Программа и методика исследований в Географической сети опытов по комплексному применению средств химизации в земледелии. Под редакцией $\rm H.3.~M$ илащенко $\rm -M., -1990. -186~c.$
- 11. Станков Н.З. Методика взятия корней в поле // Доклады ВАСХНИЛ. № 11. 1954. С. 10-17.
- 12. Трепачев Е.П. Расчет возможного вклада органического вещества и азота многолетними бобовыми в плодородие почвы / Агрохимические аспекты биологического азота в современном земледелии. М. 1999. Раздел 4.5. С. 375-379.
- 13. Трепачев Е.П. О значении пожнивно-корневых остатков и неучтенного органического вещества бобовых в почве / Агрохимические аспекты биологического азота в современном земледелии. М. 1999. Раздел 4.2. С. 359-361.

NITROGEN FIXATION OF PEA VARIETIES OF NEMCHINOVKA SELECTION IN DEPENDENCE ON FERTILIZERS ON SOD-PODZOLIC SOIL OF THE CENTRAL NON-BLACK EARTH REGION AND CONTRIBUTION OF FIXED NITROGEN INTO SMALL BIOLOGICAL CYCLE

V.V. Kononchuk, V.D. Shtyrhunov, G.V. Blagoveschenskij, S.M. Timoshenko, S.V. Sobolev, T.O. Nazarova

RUSSIAN FEDERAL RESEARCH CENTER «NEMCHINOVKA»

Abstract: On the moderately cultivated sod-podzolic soil of the centre of Nonchernozem zone of the Russian Federation yield of haylage and grain of peas-wheat mixtures 4,6-8,4 t/ha and 2,4-3,4 tons/ha (89 to 100% of maximum achieved) was achieved by introducing $P_{80}K_{110}$ and $N_{30}P_{80}K_{110}$ depending on composition, grain yield of pure crops of peas and maple pea in this case achieved 3,2-4,2 t/ha (86-100%). These options and crop residues into arable layer additionally come 60-130 kg/ha of symbiotic fixed nitrogen (KF 0,39-0,74) with the enrichment of the soil 12-73 kg/ha. Estimated increase of possible grain yield of subsequent winter wheat from $N_{biol.}$ can reach 6-10 t/ha.

Keywords: Non-Black Earth region, peas, variety, fertilizer, yield, nitrogen fixation.