showed that application of complete fertilizer combined with micro fertilizers ($N_{60}P_{60}K_{60} + ZhUSS$ - 2, $N_{60}P_{60}K_{60} + ZhUSS$ -3) contributed to a better formation of the above-ground biomass and symbiotic apparatus of lupine plants, that provided the seed yield of 2,39 and 2,35 t / ha of high quality with a crude protein content of 41,3 % and 40,5 %. Thus high economic (level of profitability of 184,6 % and 183,2 %) and bioenergy (bioenergetic factor of 2,4 and 2,3) effectiveness of cultivation of white lupine was achieved.

Keywords: lupine, cultivar, fertilizers, plant height, air-dried substance, nodules, productivity, crop quality, efficiency.

УДК:633.2/3:631

ФОРМИРОВАНИЕ ПРОДУКТИВНОСТИ ОДНОЛЕТНИХ АГРОФИТОЦЕНОЗОВ НА ОСНОВЕ ВЫСОКОЭНЕРГЕТИЧЕСКИХ КУЛЬТУР В УСЛОВИЯХ СЕВЕРО-ВОСТОЧНОЙ ЧАСТИ БЕЛАРУСИ

H.H. ЗЕНЬКОВА ¹, кандидат сельскохозяйственных наук **В.А. МИХАЛЬЧЕНКО** ² **А.Е. ЛУПАНОВ** ³, аспирант

¹ УО «ВИТЕБСКАЯ ГОСУДАРСТВЕННАЯ ОРДЕНА «ЗНАК ПОЧЕТА» АКАДЕМИЯ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ», РЕСПУБЛИКА БЕЛАРУСЬ

ЕГИПАРНОИ МЕДИЦИПЫ», РЕСПУБЛИКА БЕЛАРУСЬ ² ООО «ТЕХСОВТОРГ», РЕСПУБЛИКА БЕЛАРУСЬ

³ ФГБОУ ВО «ОРЛОВСКИЙ ГОСУЛАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

В статье изложены особенности формирования продуктивности однолетних агрофитоценозов в условиях северо-восточной части Республики Беларусь. Сорта проса, пайзы и сорго белорусской селекции характеризуются высокой биологической пластичностью, адаптивностью, рационально используют агроклиматические условия зоны возделывания. Урожайность их зеленой массы в зависимости от плодородия почв достигает 350-500 ц/га. Изучение продуктивности и качественного состава зеленой массы и заготовленных кормов из проса, сорго, пайзы и ее смесей с бобовыми культурами показало, что, посевы однолетних теплолюбивых культур обеспечивают высокую урожайность зеленой массы в сочетании с высоким содержанием обменной энергии, минеральновитаминных веществ, а включение бобового компонента повышает обеспеченность корма белком.

Ключевые слова: агрофитоценоз, продуктивность, просо, пайза, сорго, зеленая масса, вика яровая, горох, урожайность, белок, обменная энергия.

Производство и заготовка травяных кормов в настоящее время осуществляется с использованием небольшого ассортимента кормовых культур. Однако в условиях недостаточного увлажнения, большое значение для стабилизации и увеличения производства кормов имеет возделывание культур, обеспечивающих высокие урожаи в экстремальных условиях. В последние годы в связи с заметным изменением климата встает вопрос проведения исследований по изысканию новых видов кормовых культур. В этой связи целесообразно расширение посевов, к которым относятся просо, пайза, сорго. Достоинства данной группы культур – засухоустойчивость, обеспечивающая низкий транспирационный коэффициент (250-300), высокая продуктивность зеленой массы (350-500 ц/га), а так же низкая энерго – и ресурсозатратная технология их возделывания. Известно, что эти культуры по биохимическим показателям характеризуются высоким содержанием углеводов и недостаточным количеством протеина. Избыточное количество сахаров приводит к закислению корма за счет образования большого количества уксусной кислоты. Выходом из данного положения является совместное консервирование с высокобелковыми культурами. Бинарное использование этих культур с бобовыми травами способно обеспечить самоконсервирование корма.

Среди предлагаемых производству культур, в почвенно-климатических условиях северо-восточной части Республики Беларусь хорошо зарекомендовали себя сорта белорусской селекции. Они характеризуются высокой биологической пластичностью, адаптивностью, рационально используют агроклиматические условия зоны возделывания. Просо и пайза являются скороспелыми культурами, что для условий Витебской области особенно актуально. При выращивании пайзы на зеленый корм возможно двухукосное использование. Культура сорго представлена большим разнообразием форм, возделываемых на продовольственные и кормовые цели (сорго сахарное, суданская трава, сорго-суданковый гибрид).

С целью включения высокоэнергетических культур в структуру посевных площадей нами было проведено определение продуктивности и качественного состава зеленой массы и заготовленных кормов из проса, сорго, пайзы и ее смесей с бобовыми культурами.

Методика и условия проведения исследований

Полевые опыты проводились на дерново-подзолистых среднесуглинистых почвах в 2009-2011 гг. Пахотный горизонт характеризовался следующими основными агрохимическими показателями: pH (KCl) – 6,0; гумус – 2,1 %; P_2O_5 – 212; K_2O – 205 мг/кг почвы. Закладку полевых опытов, наблюдение и учеты проводили в соответствии с методическими указаниями ВНИИ кормов им. В.Р. Вильямса. Система обработки почвы использовалась согласно требованиям, изложенным в отраслевом регламенте для среднесуглинистых почв в Республике Беларусь. Предшественник - однолетние травы. Обработка почвы общепринятая. Минеральные удобрения вносили общим фоном весной из расчета $N_{80}P_{60}K_{90}$. После укоса проводили подкормку азотными удобрениями в дозе N_{52} . Повторность опыта четырехкратная. Площадь учетной делянки 25 м².

Таблица 1

Схема опыта

Культура	Норма высев	а, млн. шт./га	Компоне	ент, %	
	злаковый	бобовый	злаковый	бобовый	
Вика+овес (стандарт)	4,2	0,9	70	30	
Сорго сахарное	1,0	-	100	-	
Сорго зерновое	1,0	-	100	-	
Сорго-суданковый гибрид	1,2	-	100	-	
Пайза	4,5	-	100	-	
Просо	4,0	-	100	-	
Пайза+ люпин	3,15	0,5	70	30	
Пайза+ горох	3,15	0,5	70	30	
Пайза+ вика	3,15	0,9	70	30	

Анализы химического состава кормов проведены по схеме общего зоотехнического анализа с определением показателей по соответствующим методикам. На основании фактических данных о химическом составе рассчитаны данные общей питательной ценности кормов в НИИ прикладной ветеринарной медицины и биотехнологии УО ВГАВМ.

Результаты и обсуждение. Изучение одновидовых посевов сорговых культур показало, что по урожайности зеленой массы пайза и сорго-суданковый гибрид превзошли стандарт (традиционную вико-овсяную смесь) на 21,6 и 8,8 т/га сформировав урожайность соответственно 63,9 и 51,1 т/га (таблица 2).

Невысокая урожайность зеленой массы отмечена на посевах сорго зернового (23,7 т/га) и сорго сахарного (25,9 т/га). На уровень продуктивности этих культур оказали существенное влияние показатели температурного фактора в мае-июне месяцах в условиях северо-восточной части Республики Беларусь. В то же время пайза в этот период более активно наращивала корневую систему и формировала высокую кустистость растений. Урожайность зеленой массы проса оказалась выше, чем у всех видов сорго, но ниже, чем у стандарта, так как оно наиболее холодостойкое по сравнению с сорговыми культурами.

Таблица 2

Урожайность зеленой массы однолетних культур

Ba	ариант		Зеленая масса				
		по комі	по компонентам			вещество	
		злаковый, т/га	бобовый, т/га	т/га	% к стандарту	%	т/га
Вика+овес (стаг	ндарт)	21,9	20,4	42,3	100	18,60* 28,20	9,82
Просо		38,7	-	38,7	91,5	21,30	8,24
Пайза		63,9	-	63,9	151	22,10	14,12
Сорго сахарное		25,9	-	25,9	61,2	21,29	5,44
Сорго зерновое		23,7	-	23,7	56,0	21,79	5,16
Сорго-суданковый гибрид		51,1		51,1	120,8	23,80	12,16
Пайза+ люпин	1-й укос	21,9	22,0	(5.2)	154	13,10 18,61	7,0
	2-й укос	21,3	-	65,2	154	11,50	2,45
	всего	43,20	22,0				9,45
Пайза+ горох	1-й укос	19,3	18,8	<i>(</i> 1.0	1.46	11,50 17,60	6,12
	2-й укос	23,7	-	61,8	146	13,10	2,73
	всего	43,0	18,8				8,85
Пайза+ вика	1-й укос	24,7	20,5			13,10 19,10	7,95
	2-й укос	14,4	5,2	64,8	153	11,50 18,10	4,26
	всего	39,1	25,7				12,21
HCP_{05}			3,5				

^{*} в числителе – злаковый, в знаменателе – бобовый компонент

По урожайности сухого вещества значительное преимущество имела пайза (14,12 т/га). Далее культуры распределились в следующем порядке: сорго-суданковый гибрид (12,16 т/га), вико-овсяная смесь (9,82 т/га), просо (8,24 т/га), сорго сахарное (5,44 т/га), сорго зерновое (5,16 т/га).

Кроме одноусного использования посевов пайзы в чистом виде нами изучалась продуктивность посевов пайзы при двуукосном использовании, а также при возделывании ее смесей с различными бобовыми культурами (люпином, горохом, викой). Учет урожайности надземной массы показал, что по ее уровню пайза-бобовые смеси незначительно превосходили одновидовые посевы. Максимальная урожайность получена с совместных посевов пайзы и люпина (65,2 т/га). В этом случае урожайность зеленой массы первого укоса составила 43,9 т/га, где на долю бобового компонента приходилось около 50% массы (22,0 т/га). Урожайность второго укоса составила 21,3 т/га, однако бобового компонента в нем не сформировалось.

Смешанный посев пайзы с викой яровой по урожайности зеленой массы незначительно $(0,4\,\mathrm{T/ra})$ уступал вышеназванной смеси. Урожайность злакового и бобового компонента в укосах составила: 1 укос — пайза $24,7\,\mathrm{T/ra}$, вика — $20,5\,\mathrm{T/ra}$; второй укос — $14,4\,\mathrm{u}$ 5,2 $\mathrm{T/ra}$ соответственно. Доля бобового компонента за два укоса в этой смеси оказалась максимальной $(25,7\,\mathrm{T/ra})$.

Урожайность зеленой массы пайза-гороховых смесей оказалась ниже, чем у всех изучаемых пайза-бобовых смесей (61,8 т/га), но не менее, чем при посеве пайзы в чистом виде. Урожайность первого укоса составила 38,1 т/га, в том числе бобового компонента 18,8 т/га, урожайность второго, в которую входил только злаковый компонент -23,7 т/га.

Нами определен процент сухого вещества в растениях и его выход с единицы площади. Установлено, что во время уборки в техническую фазу содержание сухого вещества в бобовом компоненте было выше, чем в злаковом. Поэтому все злаково-бобовые ценозы по сбору сухого вещества превзошли одновидовой посев пайзы.

Среди злаково-бобовых смесей по сбору сухого вещества наиболее высокопродуктивной оказалась пайза-виковая, где его выход составил 12,21 т/га. Ценоз на основе пайзы и люпина по этому показателю уступал ей на 2,76 т/га. Более низкий сбор сухого вещества получен с урожаем зеленой массы на посевах пайзы с горохом - 8,85 т/га.

Среди злаковых культур наибольшее содержание сырого белка отмечено у соргосуданкового гибрида — 14,6 % (таблица 3). Накопление сырого белка в растениях пайзы в зависимости от варианта было в пределах 12,5 % — 13,6 %. При возделывании пайзы с бобовым компонентом этот показатель составил 12,5 %. Существенное превышение его естественно наблюдалось у бобовых культур по сравнению со злаковыми. У люпина узколистного содержание сырого белка находилось на уровне 22,4 %, у вики посевной — 21,4 % .

Таблица 3 Содержание питательных веществ в 1 кг сухого вещества

Вариант		Сырой	Сырая клетчатка, %	Кормовых	Обменной
		белок, %		единиц	энергии, МДж
Просо		12,0	28,3 0,77		9,9
Сорго сахарное		11,3	28,7 0,78		9,9
Сорго зерновое		12,9	35,8	0,67	8,6
Сорго-суданковый гибрид		14,6	32,5	0,67	9,1
Укос					
Овес +вика	1-й	11,5*	<u>25,6</u>	0,80	<u>9,0</u>
(стандарт)		23,4	27,1	0,88	8,9
	2-й	16,3	25,8	0,79	9,8
Пайза	1-й	13,6	24,9	0,78	10,02
	2-й	12,3	28,8	0,74	9,84
Пайза+ люпин 1-й		12,5	<u>27,6</u>	0,79	<u>10,5</u>
		22,4	25,1	0,70	9,5
	2-й	11,5	25,6	0,74	10,0
Пайза+ горох	1-й	<u>12,5</u>	<u>26,6</u>	0,78	<u>10,2</u>
		18,4	27,1	0,72	9,5
	2-й	11,6	25,9	0,74	9,7
Пайза+ вика	1-й	12,5	<u>28,6</u>	0,73	<u>10,1</u>
		21,4	28,1	0,67	9,9
	2-й	11,3	25,8	0,69	9,8

^{*} в числителе – злаковый, в знаменателе – бобовый компонент

Содержание клетчатки в зеленой массе в наших исследованиях зависело как от биологических особенностей вида кормовой культуры, так и от фазы развития растений. При одноразовой уборке злаковых культур наибольшее содержание клетчатки в зеленой массе было у сорго зернового и сорго-суданкового гибрида, у которых отмечено быстрое старение нижних ярусов листьев и стебля. Так, количество сырой клетчатки в зеленой массе проса и сорго сахарного составило 28,3 и 28,7 % соответственно, тогда как сорго зернового и сорго-суданкового гибрида значительно больше (35,8 и 32,5 % соответственно).

Комплексная оценка питательности корма выражается уровнем содержания обменной энергии. Анализ полученных результатов показал, что зеленая масса по уровню содержания кормовых единиц в 1 кг корма изучаемых кормовых культур существенно различалась. Этот показатель колебался в пределах 0,67-0,80 единиц. Аналогичная закономерность отмечена при расчете обменной энергии, так как у бобовых культур показатель содержания белка выше, чем у зерновых, а по содержанию БЭВ культуры обменялись местами. Содержание обменной энергии у злаковых кормовых культур находилось на уровне 8,6-10,5 МДж, у бобовых 8,9-9,8 МДж.

Мы провели сравнительную оценку изучаемых культур по аминокислотному составу. По содержанию лизина преимущество отмечено в зеленой массе проса, сорго сахарного и

пайзы (0,3-0,37 % в 1 кг сухого вещества). Минимальное значение этого показателя имело сорго зерновое -0,2 %.

По содержанию аргинина максимальный процент был у сорго всех видов -0.4-0.6 % в 1 кг сухого вещества, пайза и просо содержали 0.23-0.24 %.

Следует отметить, что существенных различий среди исследуемых культур в отношении такой аминокислоты как метионин не установлено, его содержание находилось на уровне 0,3-0,4 % в 1 кг сухого вещества. В зеленой массе проса его показатель составил 0,2 %. Аналогичная закономерность отмечена и по уровню наличия цистина. Наибольшее содержание этой аминокислоты отмечено у сорго зернового (0,2 % в 1 кг сухого вещества).

Полноценность корма в зоотехнической практике в первую очередь определяется сахаро-протеиновым соотношением. Установлено, что переваримость белка осуществляется в результате деятельности микрофлоры желудочного тракта, а энергетическим сырьем для нее является сахар. В сбалансированных рационах кормления крупного рогатого скота соотношение сахара и белка должно составлять 1:1.

Сахара в растительных кормах представлены моносахаридами (глюкоза и фруктоза) и дисахаридами (мальтоза и сахароза).

Среди изучаемых культур наибольшее количество сахара накапливает сорго сахарное и сорго-суданковый гибрид.

Повышенным накоплением сахаров в зеленой массе характеризуется пайза, наименьший уровень этого показателя отмечен у проса и сорго зернового.

Кальций и фосфор необходим животным организмам в первую очередь для формирования костной ткани. В значительной мере эти элементы определяют также интенсивность синтеза аминокислот. Потребность животных в макроэлементах, в первую очередь в кальции и фосфоре возрастает по мере повышения их продуктивности. По нормативным данным, с увеличением среднесуточного надоя молока от коровы с 10 до 20 кг, потребность в кальции и фосфоре возрастает соответственно с 48 до 62 и с 45 до 63 г в сутки.

В наших исследованиях уровень выноса кальция и фосфора с урожаем зеленой массы зависел от биологических особенностей культуры и фазы развития растений. В период технической спелости изучаемых нами культур наибольшее содержание кальция и фосфора отмечено у проса и составило 1,3 г и 1,1 г в 1 кг натурального корма соответственно. Ближе к уровню этого показателя находится сорго зерновое, а наименьшее наличие кальция и фосфора было у сорго сахарного и сорго-суданкового гибрида (0,5 и 0,35; 0,6 и 0,4 соответственно).

Продуктивность сельскохозяйственных животных зависит не только от наличия макроэлементов, но необходимо наличие в рационах и микроэлементов. Как показали результаты лабораторных исследований, максимальное количество марганца накапливалось в зеленой массе сорго зернового и составило 35,7 мг/кг сухого вещества. Несколько ниже (30,4; 29,4 мг/кг) его содержалось в урожае зеленой массы сорго-суданкового гибрида и пайзы, минимальное значение отмечено у сорго сахарного — 25,1 мг/кг сухого вещества. Содержание кобальта в кормовых растениях в условиях нашей республики недостаточное, что связано в основном с типом почв. По этой причине систематическое внесение удобрений или микродобавок с кобальтом, позволяет увеличить его содержание в кормах и предотвратить заболевания животных.

Поэтому, немаловажное значение имеет выявление наличия кобальта в изучаемых кормовых культурах. Установлено, что однолетние культуры накапливают в урожае зеленой массы этого элемента от 0,093 до 0,123 мг/кг сухого вещества.

В условиях республики отмечается недостаточное содержание меди в кормах относительно зоотехнической нормы. Показатели этого элемента в изучаемых культурах существенно не различались и находились в пределах 3,49-4,27 мг/кг сухого вещества.

Для нормального обмена веществ животным требуется большая группа витаминов, часть из которых может синтезироваться в организме животного, особенно крупного рогатого скота, обладающего сложным многокамерным желудком. Наиболее требовательны

к витаминам свиньи и птицы. Витамины группы В выполняют самые различные функции в животном организме. Их роль обусловлена тем, что они входят в состав ферментных систем организма в качестве активной группы (кофермента). Потребность в этих витаминах покрывается за счет того количества, которое содержится в кормах и синтезируется микроорганизмами пищеварительного тракта. Витамин С (аскорбиновая кислота) в организме выполняет большую физиологическую роль: обеспечивает дыхание клеток, деятельность рибосом и митохондрий, участвует в образовании стероидных гормонов, активизирует усвоение железа, проявляет антиоксидантные свойства.

Зеленая масса, полученная из проса характеризуется относительно высоким уровнем содержания витамина B_1 , которого в 1 кг сухого вещества содержится 7,1 мг/кг. Следует отметить, что у этой культуры сравнительно высокое наличие каротина (33 мг/кг). Уровень содержания витамина C составил 38,6 мг/кг.

Среди изучаемых культур в урожае зеленой массы наибольшее количество витамина B_5 отмечено при возделывании сорго сахарного (59 мг/кг сухого вещества). Химический анализ зеленой массы показал высокий уровень содержания каротина в сорго зерновом — 37 мг в 1 кг сухого вещества. Сорго-суданковый гибрид отличается быстрым ростом и развитием растения, поэтому содержание каротина в техническую фазу уборки составило 24 мг/кг. Такая же закономерность отмечена и при одноукосной уборке пайзы с использованием зеленой массы для приготовления травяного корма. Таким образом, по содержанию витаминов в зеленой массе просо-сорговых культур соответствует зоотехнической норме для крупного рогатого скота за исключением витамина B_2 .

Выявлено, что по содержанию питательных веществ в исходном сырье культуры отличались в зависимости от их вида и смеси с бобовым компонентом. Следует отметить, что высокое содержание каротина отмечено у всех изучаемых вариантов в чистом виде и составило 33,2-38,3 мг, а в смешанных посевах -16,6-20,8 мг в 1 кг сухого вещества.

В силосах, приготовленных из одновидовых посевов, содержание протеина составило 11,1-13,9%, а включение бобового компонента увеличило его содержание от 17,5 до 20,5% (таблица 4).

Таблица 4 Химический состав и питательность силоса из однолетних культур

Культура	В 1 кг сухого вещества				
	сырой	обменная энергия,			
	протеин, %	клетчатка, %	МДж		
Просо	13,9	29,25	9,1		
Сорго-суданковый гибрид	11,1	26,9	9,62		
Пайза	13,6	29,6	9,1		
Пайза+ люпин	18,9	32,86	9,2		
Пайза+ горох	20,5	29,6	9,45		
Пайза+ вика	17,5	27,1	9,33		

Как правило, силоса, заготовленные не в техническую фазу, содержали большое количество клетчатки, что снижало качество корма. Установлено, что при уборке проса, пайзы и сорго в фазу выметывания, а бобовых культур в фазу образования бобов, формирования семян уровень клетчатки не превышал 30 %. Поэтому приготовленный силос содержал от 9,1 до 9,62 МДж энергии в 1 кг сухого вещества.

Полученные результаты силосов по видовому составу кислот и их количеству показали, что отсутствие масляной кислоты говорит о том, что исходное сырье соответствует требованиям силосных культур (таблица 5).

Показатель кислотности рН приготовленных силосов составил 4,6-5,2, что обеспечивает как сохранность корма, так и благоприятное влияние на животных. Важным критерием при обеспечении оптимальной кислотности силоса является наличие большего количества молочной кислоты по отношению к уксусной.

Таблица 5

Качественные показатели кормов из однолетних культур

Корм	рН	Колич	Количество кислот, %		Сумма кислот,	Соотношение кислот, %		
		молочная	уксусная	масляная	%	молочная	уксусная	масляная
Просо	4,6	1,06	0,43	-	1,49	71,1	28,9	-
Сорго-суданковый гибрид	4,8	0,81	0,42	-	1,23	66,1	33,9	-
Пайза	5,2	0,49	0,36	-	0,85	57,7	42,3	-
Пайза+ люпин	4,8	0,59	0,62	-	1,22	49,6	50,4	-
Пайза+ горох	4,8	0,87	0,62	-	1,49	58,3	41,7	_
Пайза+ вика	4,8	0,60	0,68	-	1,28	47,2	52,8	-

Если в соотношении молочной кислоты к уксусной имело в одновидовых посевах злаковых культур преимущество молочная кислота, то при включении бобового компонента это соотношение незначительно менялось в сторону уксусной кислоты.

Таким образом, посевы однолетних теплолюбивых культур в условиях северовосточной зоны Республики Беларусь обеспечивают высокую урожайность зеленой массы в сочетании с высоким содержанием обменной энергии, минерально-витаминных веществ, а включение бобового компонента повышает обеспеченность корма белком.

Литература

- 1. Лукашевич Н.П., Зенькова Н.Н., Шлома Т.М. Особенности возделывания многоукосных однолетних ценозов и сорговых культур / Рекомендации. Витебск: ВГАВМ, 2008. 44 с.
- 2. Лукашевич Н.П., Зенькова Н.Н. Реализация биологического потенциала продуктивности однолетних и многолетних агрофитоценозов: монография. Витебск: ВГАВМ. 199 с.
- 3. Шлапунов В.Н. Зенькова Н.Н., Лукашевич Т.Н. Резервы производства белка из однолетних кормовых культур / Материалы международной научно-практической конференции «Проблемы дефицита растительного белка и пути его преодоления». Жодино, 2006 г. С. 252-260.

FORMATION OF EFFICIENCY OF ANNUAL AGROPHYTOCENOSIS BASED ON HIGH-ENERGY CROPS IN THE NORTH-EASTERN PART OF BELARUS

N.N. Zen'kova¹, V.A. Mihal'chenko², A.E. Lupanov³

¹ UO «VITEBSK STATE ORDER «BADGE OF HONOR» ACADEMY OF VETERINARY MEDICINE», Vitebsk, Republic of Belarus

² LLC «TEHSOFTTORG», Minsk, Republic of Belarus ³ FGBOU VO «OREL STATE AGRARIAN UNIVERSITY»

Abstract: The article describes the features of formation of efficiency annual agrophytocenosis in a north-eastern part of the Republic of Belarus. Varieties of millet, sorghum and payza of Belarusian selection are characterized by high biological plasticity, adaptability, rational use agro-climatic conditions for cultivation zone. The yield of the green mass, depending on soil fertility reaches 350-500 centners/ha. The study of productivity and qualitative composition of green mass and feed from harvested millet, sorghum, payza and its mixtures with legumes showed that annual heat-loving crops provide high yields of green mass combined with high exchange energy, mineral and vitamin substances.

Keywords: Agrophytocenosis, productivity, forage, millet, payza, sorghum, green mass, spring vetch, peas, yield, protein, exchange energy.