УДК 633.367.2:631.52

АКТУАЛЬНЫЕ ТРЕБОВАНИЯ К НОВЫМ СОРТАМ УЗКОЛИСТНОГО ЛЮПИНА В УСЛОВИЯХ МЕНЯЮЩЕГОСЯ КЛИМАТА

П.А. АГЕЕВА, кандидат сельскохозяйственных наук

н.а. почутина

ФГБНУ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЛЮПИНА» e-mail: lupin.labuzkolist@mail.ru

В статье приведены научные достижения по селекции узколистного люпина и перспективные направления селекционной работы.

Ключевые слова: люпин узколистный, селекция, сортообразец, сорт, сортоиспытание, продуктивность, структурный анализ, засухоустойчивость, генофонд.

Люпин узколистный является ценной зернобобовой культурой, менее требовательной к условиям выращивания среди культур данной группы. Содержание сырого протеина в его зерне варьирует в зависимости от экотипа от 32 до 37 %, в сухом веществе зеленой массы — от 17 до 20 %. Дефицит растительных белков для откорма животных постоянно поднимает проблему по созданию и внедрению новых более ценных, адаптированных к конкретным условиям выращивания сортов люпина. Одним из приоритетных направлений в селекции является объединение в одном генотипе экологической устойчивости и продуктивности.

В селекционном плане узколистный люпин — очень молодая культура. Реальные успехи по созданию культурных сортов этого вида в России появились только лишь в конце 80-х годов прошлого столетия. Узколистный люпин в диком состоянии имел большое количество недостатков, которые значительно усложняли селекционную работу. Из-за высокой алкалоидности зерна и зеленой массы его нельзя было считать кормовой культурой, поэтому изначально узколистный люпин рассматривался как сидерат. Кроме того, он сильно поражался вирусными и грибными болезнями, был совершенно неустойчив к растрескиванию бобов и осыпанию семян, имел продолжительную фазу розетки и незаканчивающийся вегетативный рост.

В результате селекционной работы во второй половине прошлого столетия в различных странах (Австралии, Белоруссии, Польше, России и др.) стали появляться формы с пониженным содержанием алкалоидов – менее 0,1 % в семенах. Позднее были созданы источники устойчивости к болезням и растрескиванию бобов. Селекцией узколистного люпина в России занимались в Московской сельскохозяйственной академии им. К.А. Тимирязева, Московском селекцентре (Немчиновка), на Брянской Государственной сельскохозяйственной опытной станции. На базе последней в 1987 году был создан Всероссийский НИИ люпина. С организацией института и укреплением его кадрами объем научных исследований по узколистному люпину значительно расширился. Были разработаны направления, определены цели, задачи селекционной работы и пути их решения. Значительно расширился генофонд, что является основой успешной селекционной работы. Одновременно с созданием новых сортов узколистного люпина решались технологические вопросы выращивания этой культуры в чистом виде и в смешанных посевах.

Последовательно решались вопросы:

- перевод селекционного материала на нерастрескивающуюся основу путем использования австралийских и белорусских (вторичных) источников устойчивости;
- создание форм относительно устойчивых к фузариозу путем изучения селекционного материала на фузариозном фоне и отбора устойчивых форм;
- стабилизация алкалоидности на оптимальном уровне для кормовых сортов 0.04-0.05 %, для сидеральных до 1.0 %.

В результате проделанной работы были созданы сорта узколистного люпина различного морфотипа (ветвистые, с разной степенью детерминации бокового ветвления и

эпигональные), различного хозяйственного использования (кормовые, пищевые, сидеральные) с уровнем зерновой продуктивности до 3,5 т/га (табл. 1).

Таблица 1 **Сорта узколистного люпина селекции ВНИИ люпина**

Сорта	Год включения в Госреестр	Регионы допуска	Характеристика
Витязь	2011	2,3,4,5,7,10	Продуктивный, скороспелый
Белозерный 110	2003	2,3	Универсального типа использования
Смена	2007	2,3,5,7,9	Среднеспелый, ветвистый
Кристалл	1998	2,3,4,5,7	Имеет блокировку бокового ветвления
Снежеть	2002	2,3,4,9	Пищевой, скороспелый
Радужный	2005	2,5	Засухоустойчивый, низкоалкалоидный
Надежда	2004	10	Ультраскороспелый, колосовидный
Брянский сидерат	2012	3	Алкалоидный
Сидерат 46	2015	2,3,4,5,7,10	Продуктивный, сидерального типа использования

Созданные кормовые и сидеральные сорта узколистного люпина районированы на зерно, зеленый корм и органическое удобрение в семи регионах Российской Федерации, в которые входят около 40 областей и республик.

В настоящее время основными товарными сортами являются Белозерный 110 и Витязь. При госсортоиспытании сорта Витязь на сортоучастках различных регионов средняя прибавка к стандарту по урожаю основной продукции составила 0,32т/га, по урожаю сухого вещества зеленой массы — 0,41т/га. Лучшие результаты по зерновой продуктивности — 3,3-3,6т/га получены на сортоучастках Орловской, Владимирской, Брянской и Смоленской областей [1]. Новый сорт имеет достаточно высокий потенциал адаптивности. Об этом можно судить по результатам сортоиспытания в зонах значительно различающихся по почвенно-климатическим условиям (табл. 2).

Таблица 2 Результаты испытания люпина сорта Витязь на госсортоучастках

Область, республика	Госсортоучасток	Урожайно	ость зерна, т/га	Урожайность сухого в-ва зеленой массы, т/га	
		Витязь	Стандарт	Витязь	Стандарт
Республика Мордовия	Старосиндровский	4,12	4,03	3,98	3,95
Калининградская	Зеленоградский	3,98	3,94	7,22	7,16
Орловская	Володарский	3,10		3,24	
Брянская	Стародубский	2,91	2,89	5,22	5,0
Кемеровская	Яшкинский	2,71	2,32	8,12	6,74
Липецкая	Липецкая ГСС	2,18		10,68	
Калужская	Кузьминический	2,15	1,76	4,50	3,60

Для реализации потенциала продуктивности сортам узколистного люпина в первую половину вегетации требуется хорошая влагообеспеченность и невысокий температурный режим. Эти условия в юго-западной зоне Центрального региона в последние годы отсутствуют. Поэтому в связи с изменением климата и потеплением в период вегетации растений меняются требования к создаваемым новым сортам и соответственно корректируются направления селекции. Ранее созданные сорта узколистного люпина в условиях засухи не наращивают биомассу и усыхают в третьей декаде июля — начале августа на 2-3 недели раньше нормального биологического срока, что приводит к недобору урожая. Подобный негативный результат наблюдается на протяжении нескольких последних лет. С целью выделения форм с ускоренным периодом накопления биомассы и для пополнения генофонда проведен структурный анализ группы сортообразцов нашей селекции в фазу технологической спелости укосной продукции. Для анализа на структуру берем

селекционные номера гибридного происхождения с визуально хорошим развитием листостебельной массы или выделившиеся по высоте растений. Наиболее высокорослые номера СН78-07 и СН15 (Г-613 х Щ – Щ Добр), 74,8 и 74,2 см, соответственно, превзошли стандарт, сорт Витязь, по высоте растений на 14,9 и 14,3 см. (табл. 3). Селекционный номер 15 занял ведущее положение по массе растения и массе бобов, 87,7 и 35,3 г, значительно превысив по этим показателям стандарт, который выделился по облиственности. Подтвердили свой приоритет по высоте растений, накоплению общей биомассы и массе бобов номера 53 [(ФЛП Чбс 9 х Узк 42) х Белозёрный 110 с/з] и 40 (МК-Сирень х Надежда). На основе выделенных номеров создается новый исходный материал.

Таблица 3 Структурный анализ зеленой массы некоторых сортообразцов узколистного люпина в фазу технологической спелости

3.4		Высота Масса		Кол-во Масса, грамм			0.5
№ дел. 2014 г.	Сорт, комбинация	растений,	растений,	бобов, шт.	бобов	листьев	Облиствен- ность, %
21	Витязь,	59,9	60,8	13,1	20,8	17,8	29,3
	стандарт						
10	CH 78-07	74,8	58,9	10,0	24,1	12,3	20,9
15	Г-613хЩ-Щ	74,2	87,7	13,1	35,3	19,6	22,3
	Добр						
126	СН 99хБНЧб зу	70,8	51,7	7,6	22,5	10,9	21,1
53	(ФЛПЧбс9хУзк	70,7	65,5	11,5	30,2	13,1	20,0
	42) x Б-110 c/з						
40	МК-Сирень х	69,7	54,9	10,6	23,0	11,8	21,5
	Надежда						
14	CH 59-05	68,0	52,5	11,4	19,4	13,1	20,0

Фаза созревания узколистного люпина в последние годы наступает в жаркое летнее время. Генетически закрепленный в современных сортах признак устойчивости к растрескиванию оказался недостаточным. Этот негатив особенно сильно проявился в вегетационный период 2014-го года. В естественных условиях природой были созданы селектирующие условия. В фазу созревания узколистного люпина наблюдалась сухая и очень жаркая погода, что провоцировало растрескиваемость бобов и осыпание семян на корню. Для выявления устойчивых к растрескиванию номеров применяли «метод перестоя» растений после полного созревания. Период перестоя составил от 18 до 24 дней – с 27 июля до 20 августа. Особенно жесткими были условия в августе. Температура воздуха по первым двум декадам превышала норму на 5,6-3,2°С, максимальная доходила до 35°С, осадков же выпало 6,1 и 3,6 мм, что составило 23,4 и 16,3 % от климатической нормы. В группу исследуемых номеров в качестве неустойчивого контроля взят сорт Брянский 123. Он практически полностью потерял урожай в первые пять дней после созревания. Его растрескиваемость составила 91,2 % (табл. 4).

Сорта и номера, имеющие маркерный признак устойчивости к растрескиванию «розовый боб», обусловленный наличием гена *lentus* (*le*) Витязь, Белозерный 110, Узколистный 53 и номер 304 (СН 236-03 х САС) к моменту завершения опыта потеряли 24,1-25,7 % бобов, то есть четвертую часть урожая. В производственных условиях при соблюдении технологии уборки эти потери можно минимизировать.

По номерам 395 (Каля х Танджил) и 399 ФЛУ 65-08 потеря составила 29,1 и 32,2 %, или третья часть. Лучший результат получен по сорту Смена – 11 %, который позволяет сделать предварительный вывод о том, что этот сорт можно использовать в межсортовых скрещиваниях в качестве источника устойчивости к растрескиванию бобов.

Таблица 4 Результаты учета растрескиваемости бобов по некоторым сортам и номерам узколистного люпина

No	Conv		Количество боб	Do omn ooyyyna oy roomy	
№ 2014 г.	Сорт, комбинация	Всего	Устойчивых к растрескиванию	Неустойчивых к растрескиванию	Растрескиваемость, %
898	Брянский 123, контроль	181	16	165	91,2
389	Витязь, стандарт	195	148	47	24,1
391	Смена	182	162	20	11,0
390	Белозерный 110	142	105	37	26,0
401	Узколистный 53	179	133	46	25,7
304	CH236-03 x CAC	139	102	37	26,6
395	Каля х Танджил	251	178	73	29,1
399	ФЛУ65-08	279	189	90	32,2

Для реализации потенциала продуктивности узколистного люпина немаловажное значение имеет признак засухоустойчивости растений. Его ростовые процессы в сильной степени зависят от условий увлажнения в первую половину вегетации. Депрессия урожайности наиболее сильно наблюдается в засушливые годы. Это объясняется сложностью совмещения в сорте высокой продуктивности и засухоустойчивости, предполагающего одновременно сочетание устойчивости растений к дефициту влаги и их влагообеспеченностью [2]. Засухоустойчивость - способность растений переносить значительное обезвоживание, а также перегрев клеток, тканей и органов. Существует целый ряд методов его определения. Наиболее простой из них косвенный - это метод проращивания семян в растворе осмотика (сахарозы), разработанный во Всероссийском научно-исследовательском институте растениеводства им. Н.И. Вавилова [3]. Проведена массовая оценка засухоустойчивости сортообразцов узколистного люпина по шкале, которая включает 5 групп. Высокую степень засухоустойчивости характеризует первая группа: 80-100% проросших семян на сахарозе по отношению к контролю – воде. Анализ 50-и константных селекционных сортообразцов узколистного люпина на засухоустойчивость в стадии проростков показал, что большинство из них относится к группе со средней степенью устойчивости. В то же время выделены сортообразцы разного происхождения с высокой устойчивостью к засухе в фазу проростков. Лучшими являются линии из сложной гибридной комбинации с участием сорта Белозерный 110. При подтверждении полученного результата дальнейшей использоваться они будут В селекции качестве источников засухоустойчивости.

Созданные в лаборатории сорта при изучении в конкурсном испытании и в госсортсети имели вегетационный период порядка 90-105 дней. В связи с изменением климата и значительным потеплением при недостаточном количестве осадков они стали созревать за 78-85 дней. Статистический анализ показал достоверную корреляцию (r=0.61) между количеством осадков и продолжительностью вегетационного периода сортов узколистного люпина [4]. Вегетационный период их сократился почти на две недели, масса 1000 семян уменьшилась на 25-30 %, что отрицательно отразилось на уровне урожайности. Для создания форм узколистного люпина с более продолжительным вегетационным периодом начата гибридизация наших сортономеров с позднеспелыми, имеющими продолжительную фазу розетки коллекционными сортами Оборницкий и Кормовой. Предполагается, что такие формы будут менее подвержены влиянию весенне-летней засухи. В этот период они находятся в фазе розетки и формируют мощную корневую систему, а затем интенсивно растут и дают высокий урожай зеленой массы. Такие селекционные формы могут послужить исходным материалом при создании сортов зеленоукосного типа использования для скармливания зеленой массы в свежем виде или приготовления силоса.

Литература

- 1. Агеева П.А., Почутина Н.А., Трошина Л.В. Витязь новый адаптивный сорт узколистного люпина // Зернобобовые и крупяные культуры. 2014. № 2(10). С. 96 -99.
- 2. Чекалин Н.М. и др. Селекция зернобобовых культур. М: Колос, 1981. 336 с.
- 3. Волкова А.М., Кожушко Н.Н., Макаров Б.И. Методические указания. Определение относительной жаростойкости и засухоустойчивости образцов зернобобовых культур способом проращивания семян в растворе сахарозы и после прогревания. Л., 1984.
- 4. Мисникова Н.В., Агеева П.А. Тенденции изменения климата и сортовой состав люпина // Земледелие. -2010. № 8. C. 39-40.

ACTUAL DEMANDS TO NARROW-LEAFED LUPIN VARIETIES UNDER CHANGEABLE CLIMATE CONDITIONS

P.A. Ageeva, N.A. Potchutina

FSBSE «THE RUSSIAN LUPIN RESEARCH INSTITUTE»

Abstract: In the article scientific achievements in narrow-leafed lupin breeding and perspective ways for breeding work are given.

Keywords: narrow-leafed lupin, breeding, line, variety, variety testing, productivity, structure analysis, drought resistance, genetic resources.

УДК 633.367.2:631.842.4

ВЛИЯНИЕ ЭЛЕМЕНТОВ ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ ЛЮПИНА УЗКОЛИСТНОГО НА ЗАСОРЁННОСТЬ ПОСЕВОВ В КОРОТКО РОТАЦИОННОМ СЕВООБОРОТЕ

В.М. НОВИКОВ, кандидат сельскохозяйственных наук ФГБНУ «ВНИИ ЗЕРНОБОБОВЫХ И КРУПЯНЫХ КУЛЬТУР»

Изложены результаты исследований, проведённых в 2013-2015 гг., с целью определения засорённости посевов люпина узколистного и его продуктивности в коротко ротационном севообороте при разной обработке и удобрении почвы. Изучались количественный, весовой и групповой состав сорных растений при внесении соломы, совместном внесении соломы и минеральных удобрений при их заделке вспашкой на глубину 20-22 см и поверхностной обработке почвы на 10-12 см, их влияние на урожайность зерна люпина.

Установлено, что применение поверхностной обработки почвы приводит к увеличению численности сорных растений на 8,7 %, их массы на 5,1 %, доли групп зимующих и многолетних сорных растений на 4 и 5 %, за счёт групп однолетних ранних и поздних, в сравнении со вспашкой. Совместное внесение соломы и минеральных удобрений, в сравнении с внесением соломы, по всем способам обработки почвы, также увеличивает численность на 9,1 и 12,3 %, массу сорных растений на 3,7 и 22,9 %, изменяет структуру сорного компонента в агроценозе люпина в пользу зимующих и многолетних сорных растений.

При улучшении условий влагообеспеченности в период от посева до начала фазы стеблевания люпина на 90 % изменялось увеличение количества всходов сорных растений.

Урожайность зерна люпина существенно снижалась с увеличением числа и массы сорняков в его посевах.

Ключевые слова: люпин, обработка почвы, удобрение, гидротермический коэффициент, засорённость, сорные растения, урожайность.

В решении проблем кормового белка и повышения плодородия почв огромная роль принадлежит люпину. Неудачи, связанные с возделыванием и получением хороших урожаев зерна люпина, часто связаны с высокой засорённостью посевов.